B-7251
Active Ingredients: (1R*,2S*)-N-(4-Methoxyphenyl)-5-methyl-2-(1-methylethyl) cyclohexane carboxamide 25 mg, 1,4-Dioxacycloheptadecane-5,17-dione 25mg.
Application: 1ml in beverage daily in the morning. I.e.: smoothie or juice.
Ingredients: Vegetable glycerine, (1R*,2S*)-N-(4-Methoxyphenyl)-5-methyl-2-(1-methylethyl) cyclohexane carboxamide 25 mg, 1,4-Dioxacycloheptadecane-5,17-dione 25mg, flavour.
Legal Status: Legal in Australia, food additive FEMA.
Key Points:
- Food Approved
- Clinical evidence of activity
Research Evidence and Efficacy.
1Pereira-Fernandes, A., Vanparys, C., Vergauwen, L., Knapen, D., Jorens, P.G., & Blurst, R. (2014). Toxicogenomics in the 3T3-L1 cell line, a new approach for screening of obesogenic compounds. Toxicological Sciences, 140(2), 352-363.
2Kim, S.H., Nam, G.W., Lee, H.K., Moon, S.J., & Chang, I.S. (2006). The effects of Musk T. on peroxisome proliferator-activated receptor [PPAR]-α activation, epidermal skin homeostasis and dermal hyaluronic acid synthesis. Archives of dermatological research, 298(6), 273-282.
3Michalik, L., & Wahli, W. (2006) Involvement of PPAR nuclear receptors in tissue injury and wound repair. The journal of clinical investigation, 116(3), 598-606.
4Tyagi, S., Gupta, P., Saini, A.S., Kaushal, C., & Sharma, S. (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors roles in various diseases. Journal of advanced pharmaceutical technology & research, 2(4), 236.
5Rigamonti, E., Chinetti-Gbaguidi, G., & Staels, B. (2008). Regulation of macrophage functions by PPAR-α, PPAR-ỿ, AND LXRs in mice and men. Arteriosclerosis, thrombosis, and vascular biology, 28(6), 1050-1059.
6Lefebvre, P., Chinetti, G., Fruchart, J.C., & Staels, B. (2006). Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. The Journal of Clinical Investigation, 116(3), 571-580.
7Asuthkar, S., Elustondo, P.A., Demirkhanyan, L., Sun, X., Baskaran, P., Velpula, K.K., & Zakharian, E. (2015). The TRPM8 Protein is a Testosterone receptor I. BIOCHEMICAL EVIDENCE FOR DIRECT TRPM8-TESTOSTERONE INTERACTIONS. Journal of Biological Chemistry, 290(5), 2659-2669.
8Bidaux, G., Roudbaraki, M., Merle, C., Crepin, A., Delcourt, P., Slomianny, C., … & Mauroy, B. (2005). Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. Endocrine-related cancer, 12(2), 367-382
9 Asuthkar, S., Demirkhanyan, L., Sun, X., Elustondo, P.A., Krishnan, V., Baskaran, P., …& Zakharian, E. (2015). The TRPM8 protein is a testosterone receptor II. FUNCTIONAL EVIDENCE FOR AN IONOTROPIC EFFECT OF TESTOSTERONE ON TRPM8. Journal of Biological Chemistry, 290(5), 2670-2688.
10Zhang, L., & Barritt, G.J. (2006). TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocrine-Related Cancer, 13(1), 27-38.
Research Evidence and Efficacy.
11Yee, N.S., Zhou, W., & Lee, M. (2010). Transient receptor potential channel TRPM8 is over expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer letters, 297(1), 49-55.
12Bai, V.U., Murthy, S., Chinnakannu, K., Muhletaler, F., Tejwani, S., Barrack, E.R., … & Reddy, G. (2010). Androgen regulated TRPM8 expression: a potential m RNA marker for metastatic prostate cancer detection in body fluids. International Journal of oncology, 36(2), 443-450.
13Moraes, M.N., de Assis, L.V.M., dos Santos Henriques, F., Batista Jr, M.L., Guler, A.D., & de Lauro Castrucci, A.M. (2017). Cold sensing TRPM8 channel participates in circadian control of the brown adipose tissue. Biochimica et Biophysica Acta (BBA) -Molecular cell research, 1864(12), 2415-2427.
14Leffingwell, J.C. (2007). Cool without Menthol & Cooler than menthol and cooling compounds as insect repellents. From the internet: URL: http://www.leffingwell.com/cooler-than -menthol.htm [updated Apr.5,2006]
15Chen, S., (2016). Light Dependant regulation of Sleep/Wake states by Prokineticin 2 in Larval Zebrafish (Doctoral dissertation, California Institute of Technology).
16Buhr, E.D., (2008). Differential effects of physiological temperature changes on central versus peripheral circadian clocks in mice (Doctoral dissertation, Northwestern University).